CONSENT: Consensus-based Self-Correction of Third Generation Sequencing Data

Pierre Morisse ¹, Camille Marchet ², Antoine Limasset ², Arnaud Lefebvre ¹, Thierry Lecroq ¹

> ¹Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France. ²Lille Univ, CNRS, Inria, CRIStAL, Lille 59000, France.

> > DSB 2019 February 6, 2019

- Introduction
- **Experiments**

Context

- 2011: Inception of third generation sequencing technologies
- Two main technologies: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
- Sequencing of much longer reads, tens of kbps on average, up to 1Mb (ONT ultra-long reads)
- Expected to solve various problem in the genome assembly field

Context

- Long reads (LR) are very noisy (10-30% error rate)
- Display complex error profiles (errors are mostly indels)
- Efficient error correction is mandatory
- Two main approaches: hybrid correction and self-correction

Hybrid correction

- First efficient approach for LR error correction
- Makes use of complementary short reads (SR) data
- Different approaches: Alignment of SRs to the LRs, use of a De Bruijn graph (DBG), ...
- Particularly useful on old sequencing experiments (very high error rates)

Self-correction

- Corrects the LRs solely based on the information they contain
- Third generation sequencing technologies evolve fast
- Error rates of the LRs now reach 10-12% on average
- Error correction still needed
- Self-correction is now a viable alternative

Self-correction

State-of-the-art: Two main approaches

- Compute overlaps between the LRs
- Build a DBG from solid k-mers of the LRs (LoRMA) [Salmela et al., 2016])

Self-correction

- Overlapping can be performed via:
 - Mapping (Canu [Koren et al., 2017], MECAT [Xiao et al., 2017], FLAS [Bao et al., 2018])
 - Alignment (PBDAGCon [Chin et al., 2013], daccord [Tischler and Myers, 2017])
- Two main approaches are then used

Multiple alignment

 Build a directed acyclic graph (DAG) to represent the alignments and compute consensus

```
ACCAAGGT R1
ACCAAGGT R2

ACCAAGGT R1
ACCAA..T R3

ACCAAGGT R1
ACCAA..T R3
```

e Bruiin aranh

- Divide the alignments into small windows
- Correct the windows independently with DBGs

```
.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2
GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3
```


Multiple alignment

 Build a directed acyclic graph (DAG) to represent the alignments and compute consensus

ACCAAGGT R1
ACCAAGGT R2

ACCAAGGT R1
ACCAA..T R3

ACCAAGGT A1
ACCAA..T A2

ACCAAGGT A1
ACCAA..T A3

a Bruiin aranh

- Divide the alignments into small windows
- Correct the windows independently with DBGs

```
.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2
GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTCTTGGCAG R3
```


Multiple alignment

 Build a directed acyclic graph (DAG) to represent the alignments and compute consensus

```
ACCAAGGT R1
ACCAAGGT R2

ACCAAGGT R3

ACCAAGT R3

ACCAAGT ACCAA..T R3

ACCAAGGT R1
ACCAA..T R3
```

De Bruijn graph

- Divide the alignments into small windows
- Correct the windows independently with DBGs

```
.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2
```


Multiple alignment

 Build a directed acyclic graph (DAG) to represent the alignments and compute consensus

```
ACCAAGGT R1
ACCAAGGT R2

ACCAAGGT R1
ACCAA..T R3

ACCAAGGT R3

ACCAA..T R3
```

De Bruijn graph

- Divide the alignments into small windows
- Correct the windows independently with DBGs

```
.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG
TGTTCAGGCAAATATG...GAAACAAGGCCTG..
```

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG

R₁

R₂

 R_3

Multiple alignment

 Build a directed acyclic graph (DAG) to represent the alignments and compute consensus

ACCAAGGT ACAAGGGT R_2 ACCAAGGT R₁ R₃ ACCAA..T

De Bruijn graph

- Divide the alignments into small windows
- Correct the windows independently with DBGs

```
.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG
                                           R<sub>1</sub>
                                           Ro
TGTTCAGGCAAATATG...GAAACAAGGCCTG..
                                           R₁
GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG
                                           R_3
```


Introduction

Contribution

- We introduce CONSENT, a new self-correction method combining both previous strategies:
- Alignments are divided into windows
- Windows consensus are computed using DAGs
- Windows consensus are polished with the help of local DBGs
- Compared to SOTA: Comparable results, better scalability

10/40

- 1 Introduction
- Workflow
- 3 Experiments
- 4 Conclusion

Pre-treatment

Overlap the long reads
Via mapping, with Minimap2 [Li, 2018]

First step: Retrieve alignment pile

Select a long read to correct
A
J

First step: Retrieve alignment pile

Retrieve overlapping long reads
A

First step: Retrieve alignment pile

Get the alignment pile	•			
		Α		
	R ₁		R ₂	
	R ₃		R_4	
	R ₅		R ₆	

First step: Retrieve alignment pile

Trim the alignment pile			
	ı		
	A		
	R ₁	R ₂	
	R ₃	R ₄	
	R ₅	R ₆	

First step: Retrieve alignment piles

Trim the alig	nment pile	
	Α	
R_1		R ₂
R ₃		R ₄
R_5		R ₆

Definition

A window w = (beg, end) is a "factor" of an alignment pile

Definition

A window w = (beg, end) is a "factor" of an alignment pile

Example	
	A beg end
R_1	
R_3	
R_5	\blacksquare R_6

For correction, we will only consider windows w = (beg, end) such as:

- end beg + 1 = I
- $\forall i, beg \leq i \leq end$, i is covered by at least c reads

For correction, we will only consider windows w = (beg, end) such as:

- end beg + 1 = I
- $\forall i, beg \leq i \leq end$, *i* is covered by at least *c* reads

Example

On the previous example, with c = 4:

2. Compute consensus

- Compute multiple sequence alignment (MSA) of these sequences
- Compute consensus from the MSA
- ⇒ POA [Lee et al., 2002]

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:

Morisse et al.

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:
 - Computes actual multiple sequence alignment

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:
 - Computes actual multiple sequence alignment
 - Directly builds the DAG representing the multiple alignment

POA

Workflow:

- Start with a graph only containing the first sequence
- Insert new sequences with a generalization of the Needleman-Wunsch algorithm

Segmentation strategy

- In practice, we use windows of a few hundred bases
- POA is time consuming
- We developed a segmentation strategy
- Compute MSA and consensus for smaller sequences ⇒ faster

Segmentation strategy Compute shared anchors between the window's sequences

1. Compute shared anchors between the window's sequences

Segmentation strategy

- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - \bullet A_i is followed by A_{i+1} in at least N sequences
- 2 A_{i+1} is never followed by A_i

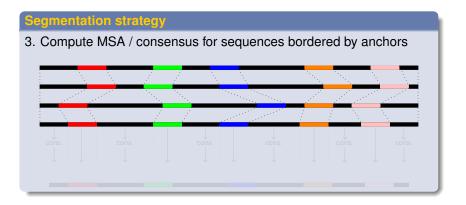
Segmentation strategy 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$: \bullet \bullet \bullet A_i is followed by \bullet A_{i+1} in at least \bullet sequences \bigcirc A_{i+1} is never followed by A_i

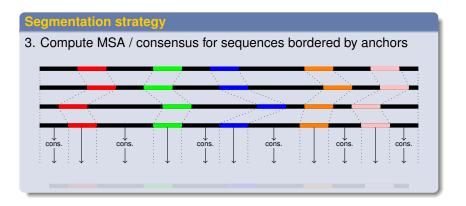
Segmentation strategy

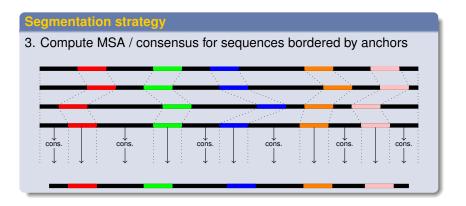
- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - \bullet A_i is followed by A_{i+1} in at least N sequences
 - 2 A_{i+1} is never followed by A_i

Segmentation strategy 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$: \bullet \bullet \bullet A_i is followed by \bullet A_{i+1} in at least \bullet sequences \bigcirc A_{i+1} is never followed by A_i

CONSENT







CONSENT

Fourth step: Polish the consensus

Approach

- Build a DBG from the window's sequences
- Consensus ⇒ solid k-mers in uppercase, weak k-mers in lowercase

GATCGGGTcatTGCCCGTGTTTATGCGTGtg

- Correct lowercase regions
- Bordered regions ⇒ Traverse the graph to find a path between solid, anchor k-mers
- Extremities ⇒ Traverse the graph as much as possible

27/40

Fifth step: Anchor the consensus to the read

Retrieve the corrected template

- Get the polished consensus
- Locally align it to the LR, around the positions of the window
- Aligned factor of the LR replaced by aligned factor of the consensus
- Repeat with other windows (in practice, overlapping)

- **1** Introduction
- Workflow
- 3 Experiments
- 4 Conclusion

Segmentation strategy validation

Results

Olitis

Simulated PacBio dataset from E. coli, 50x, 12% error rate

	Without segmentation	With segmentation		
Throughput	214,667,382	215,693,736		
Error rate (%)	0.0757	0.0722		
Runtime	5h31min	7min		
Memory (MB)	750	675		

Olitis

Datasets								
Dataset	Number of reads	Average length	Error rate	Coverage				
Simulated Pacific Biosciences data								
E. coli 30x	16,959	8,235	12.29	30x				
E. coli 60x	33,918	8,211	12.28	60x				
S. cerevisiae 30x	45,198	8,216	12.28	30x				
S. cerevisiae 60x	90,397	8,204	12.29	60x				
C. elegans 30x	366,416	8,204	12.28	30x				
C. elegans 60x	732,832	8,220	12.28	60x				
Real Oxford Nanopore data								
D. melanogaster	1,327,569	6,828	14.57	63x				
H. sapiens, chr1	1,075,867	6,744	17.60	29x				

Comparison to state-of-the-art


Compared tools

Canu

Olitis

- Daccord
- FLAS
- LoRMA
- MECAT

Comparison to state-of-the-art

Simulated data, 30x coverage Total Dataset Corrector Throughput (Mbp) Error rate (%) Deletions (%) Insertions (%) Substitutions (%) Runtime Memory (MB) Original 140 12.2862 2.6447 8.7973 0.8442 N/A N/A Canu 0.2508 0.0636 0.2001 0.0102 19min 4.613 130 daccord 0.0219 0.0034 0.0090 0.0115 14 min 6,813 131 FLAS 0.2077 0.0741 0.0043 12min 1.639 130 0.1490 LoRMA 13 0.2969 0.0429 0.1466 0.1322 10min 32.155 MECAT 107 0.1649 0.1328 0.0459 0.0018 1 min 39 sec 1,600 CONSENT 130 0.2013 0.0944 0.1095 0.0163 17 min 10 sec 2.390 Original 371 12.283 2.646 8.7937 0.8434 N/A N/A cerevisiae 30x Canu 0.8472 0.2335 0.6393 29min 3.681 227 0.0479 daccord 348 0.1186 0.0222 0.0368 0.0707 1 h 19 min 31,798 FLAS 345 0.2537 0.1863 0.0828 0.0088 29min 2,935 LoRMA 52 0.4954 0.0798 0.2690 0.1887 46min 31.899 MECAT 285 0.2111 0.1691 0.0574 0.0048 5 min 2,907 CONSENT 345 0.2890 0.1428 0.1386 0.0348 46 min 5.523 Original 3,006 12.2806 2.6449 8.7926 0.8431 N/A N/A 2.776 0.2895 0.2354 6.921 Canu 0.0682 0.0126 9h09min daccord FLAS 2,718 0.3862 0.2656 0.1469 0.0106 3h07min 10,565 LoRMA 0.2094 31.827 258 1.1573 0.4686 0.5764 8h19min MECAT 2.085 0.2682 0.2135 0.0764 0.0037 48 min 10.535 CONSENT 2.791 0.6300 0.3064 0.2958 0.0878 9 h 36 min 21.819

Morisse et al.

CONSENT

Olitis

Comparison to state-of-the-art

Simulated data, 60x coverage									
	Total								
Dataset	Corrector	Throughput (Mbp)	Error rate (%)	Deletions (%)	Insertions (%)	Substitutions (%)	Runtime	Memory (MB)	
	Original	279	12.2788	2.6437	8.7919	0.8432	N/A	N/A	
×	Canu	219	0.5211	0.1390	0.4045	0.0243	24min	3,674	
<i>coli</i> 60x	daccord	261	0.0175	0.0026	0.0062	0.0103	54 min	18,450	
	FLAS	260	0.1039	0.0907	0.0220	0.0010	38min	2,428	
Ē	LoRMA	239	0.0660	0.0098	0.0476	0.0147	1h39min	31,682	
	MECAT	233	0.1011	0.0896	0.0203	0.0008	5 min	2,387	
	CONSENT	259	0.0590	0,0368	0.0241	0.0037	36 min	4,849	
	Original	742	12.2886	2.6484	8.7963	0.8439	N/A	N/A	
cerevisiae 60x	Canu	600	0.5615	0.1518	0.4309	0.0292	1h11min	3,710	
sia	daccord	696	0.0305	0.0055	0.0180	0.0100	2 h 26 min	32,190	
94,	FLAS	690	0.1430	0.1215	0.0319	0.0031	1h30min	4,984	
leo	LoRMA	634	0.1160	0.0188	0.0778	0.0301	5h25min	31,828	
S.	MECAT	617	0.1365	0.1189	0.0286	0.0020	16 min	4,954	
	CONSENT	690	0.1418	0.0735	0.0650	0,0166	1 h 46 min	11,325	
×	Original	6,024	12.2825	2.6457	8.7937	0.8432	N/A	N/A	
90	Canu	5,119	0.6623	_	_	_	9 h 30 min	7,050	
sus	daccord	_	_	_	_	_	_	_	
C. elegans 60x	FLAS	5,614	0.2160	_	_	_	10 h 45 min	13,682	
, e	LoRMA	3,388	0.1446	_	_	_	31 h 04 min	32,104	
O	MECAT	4,941	0.1882	_	_	_	2 h 43 min	10,563	
	CONSENT	5,607	0.4604	_	_	_	27 h 04 min	32,284	

Introduction

Comparison to state-of-the-art

Real data

Dataset	Corrector	Number	Throughput (Mbp)	N50 (bp)	Aligned	Alignment	Genome	T	Total	
		of reads	i illougriput (Mbp)		reads (%)	identity (%)	coverage (%)	Runtime	Memory (MB)	
D. melanogaster	Original	1,327,569	9,064	11,853	85.52	85.43	98.47	N/A	N/A	
	Canu	829,965	6,993	12,694	98.05	95.20	97.89	14 h 04 min	10,295	
	daccord	-		-	-	-	-	_	-	
	FLAS	855,275	7,866	11,742	95.65	94.99	98.09	10 h 18 min	18,820	
	LoRMA	1,125,279	6,386	669	97.05	98.47	94.76	23 h 51 min	65,536	
	MECAT	849,704	7,288	11,676	99.87	96.52	97.34	1 h 54 min	13,443	
	CONSENT	1,065,621	8,178	12,297	99.26	96.72	98.20	38 h	51,361	
H. sapiens	Original	1,075,867	7,256	10,568	88.24	82.40	92.46	N/A	N/A	
	Canu	-	_	_	-	_	_	_	_	
	daccord	_	_	-	_	_	_	_	_	
	FLAS ¹	670,708	5,695	10,198	99.06	91.00	92.37	4 h 57 min	14,957	
	LoRMA	737,198	1,247	186	96.50	97.83	28.62	13 h 07 min	50,435	
	MECAT1	667,532	5,479	10,343	99.95	91.69	91.44	1 h 53 min	11,075	
	CONSENT	869,462	6,349	10,839	99.59	93.00	92.40	8 h 30 min	45,869	

¹ ultra-long reads were filtered out

Comparison to state-of-the-art

Contigs polishing Dataset Method Contias Aligned contigs NGA50 NGA75 Genome coverage Runtime Memory (MB) Original 0.89 N/A 1 N/A F. coli 60x RACON 4,663,914 4,663,914 99.90 2 min 628 CONSENT 4,637,588 4,637,588 99.90 7 min 4,192 Original 29 0.87 N/A N/A 29 S. cerevisiae 60x RACON 29 29 539.433 346.116 96.09 5 min 1.673 CONSENT 29 29 535.665 334.556 96.12 3 min 9.232 47 N/A N/A Original 46 0.95 C. elegans 60x RACON 47 47 5,073,456 2,349,027 99.71 46 min 14,264 CONSENT 47 47 3,737,577 2,073,591 99.57 1 h 42 min 32,144

Introduction

- **Experiments**
- Conclusion

Take-home messages

- CONSENT: new long read self-correction method
- Introduces a segmentation strategy allowing fast computation of MSA
- Compares well to the SOTA
- Only method scaling to ONT ultra-long reads
- Available at: https://github.com/morispi/CONSENT

Introduction

Future works

- Optimize the parameters (size of the windows, of *k*, etc)
- Reduce memory consumption ⇒ Split Minimap2 index
- Reduce runtime: Deeply covered windows
 - Computing MSA is expensive
 - Probably repeats ⇒ Validation strategy
- Segmentation strategy seems promising ⇒ Apply it to a greater scale

The end!

Thanks for your attention!

Questions?

CONSENT

Bao, E., Xie, F., Song, C., and Song, D. (2018). HALS: Fast and High Throughput Algorithm for. RECOMB-SEQ 2018, pages 1-7.

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., Turner, S. W., and Korlach, J. (2013).

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.

Nature Methods, 10:563-569.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017).

Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation.

Genome Research, 27:722-736.

Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial order graphs. Bioinformatics, 18(3):452-464.

Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*. 34(18):3094–3100.

Workflow

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016). Accurate selfcorrection of errors in long reads using de Bruijn

Accurate selfcorrection of errors in long reads using de Bruijn graphs.

Bioinformatics, page btw321.

Tischler, G. and Myers, E. W. (2017).

Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly.

bioRxiv.

Xiao, C. L., Chen, Y., Xie, S. Q., Chen, K. N., Wang, Y., Han, Y., Luo, F., and Xie, Z. (2017).

MECAT: Fast mapping, error correction, and de novo assembly for single-molecule sequencing reads.

Nature Methods, 14(11):1072-1074.

