CONSENT: Scalable self-correction of long reads with multiple sequence alignment

Pierre Morisse¹, Camille Marchet², Antoine Limasset², Arnaud Lefebvre¹, Thierry Lecroq¹

¹Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France. ²Lille Univ, CNRS, CRIStAL, Lille 59000, France.

> JOBIM 2019 Nantes July 5th

Context

- 2011: Inception of third generation sequencing technologies
- Two main actors: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
- Sequencing of much longer reads, tens of kbps on average
- Expected to solve various problem in the genome assembly field
- But also very noisy (10-30% error rates), most errors being indels

Error correction

- Correction: efficient way to handle these errors
- Two approaches:
 - Hybrid correction (makes use of complementary short reads)
 - Self-correction (corrects the long reads solely based on the information they contain)

Self-correction

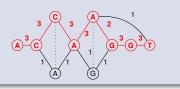
- Third generation sequencing technologies evolve fast:
 - Error rates greatly decreased, and now reach 10-12% on average
 - Read length is evergrowing, especially with ONT ultra-long reads (up to 1Mbp)
- Error correction is still the first step of many analysis projects
- Self-correction is now much more developped

Self-correction

State-of-the-art:

- Compute overlaps between the LRs
- Ocompute consensus from the overlaps

Experiments


Conclusion

Introduction

Pseudo Multiple Sequence Alignment (MSA)

 Build a directed acyclic graph (DAG) to represent the pseudo MSA and compute consensus

AC C A A GGT	R ₁	ACCAA GG T	R_1
AC A A G GGT	R_2	ACCAAT	R_3

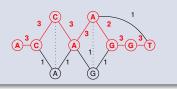
De Bruijn graph

- Divide the alignments into small windows
 - Correct the windows independently with DBGs

Morisse et al.

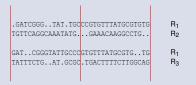
CONSENT

Experiments


Conclusion

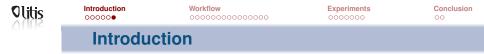
Introduction

Pseudo Multiple Sequence Alignment (MSA)


 Build a directed acyclic graph (DAG) to represent the pseudo MSA and compute consensus

AC C A A GGT	R ₁	ACCAA GG T	R_1
AC A A G GGT	R_2	ACCAAT	R_3

De Bruijn graph

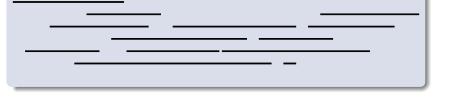

- Divide the alignments into small windows
- Correct the windows independently with DBGs

Morisse et al.

CONSENT

Contribution

- Major issue: no self-correction tool scales to ONT ultra-long reads
- We introduce CONSENT, a new self-correction method that:
 - Combines the two previous approaches (MSA + DBG)
 - Computes actual MSA
 - Compares well to the state-of-the-art, and scales better
 - Is also able to polish contigs



Conclusion

Pre-treatment

Overlap the long reads

- Currently with Minimap2 [Li, 2018]
- But not dependent on the aligner

Conclusion

First step: retrieve alignment piles

Select a long read to correct

A

Conclusion

First step: retrieve alignment piles

Retrieve overlapping long reads

A
A

Conclusion

First step: retrieve alignment piles

Get the alignment pile	i -			
		А		
	R ₁		R ₂	
	R ₃		R ₄	_
	R ₅		R ₆	

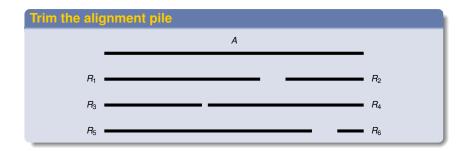
11/31

Experiments

Conclusion

First step: retrieve alignment piles

Trim the alignment pil	e			
		A		
	<i>R</i> ₁		R ₂	
	<i>R</i> ₃		R ₄	
	R ₅		R ₆	



Conclusion

First step: retrieve alignment piles

13/31

Conclusion

Second step: divide piles into windows

For correction, we will only consider windows that:

- Have a fixed length
- Are supported by at least c reads

Example

On the previous example, with c = 4:

Morisse et al.

Conclusion

Second step: divide piles into windows

For correction, we will only consider windows that:

- Have a fixed length
- Are supported by at least c reads

Example

On the previous example, with c = 4:

Experiments

Conclusion

Third step: compute consensus of a window

2. Compute consensus

- Compute MSA of the sequences
- Compute consensus from the MSA
- Unlike other methods, actual MSA is computed
- \Rightarrow POA [Lee et al., 2002]

Experiments

Conclusion

Third step: compute consensus of a window

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:

Computes *actual* multiple sequence alignment

Directly builds the DAG representing the multiple sequence alignment

Conclusion

Third step: compute consensus of a window

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:

Computes actual multiple sequence alignment

Directly builds the DAG representing the multiple sequence alignment

Conclusion

Third step: compute consensus of a window

POA (Partial Order Alignment)

- Multiple sequence alignment strategy based on partial order graphs
- Two interests:

 - Computes actual multiple sequence alignment
 - 2

Directly builds the DAG representing the multiple sequence alignment

Experiments

Conclusion

Third step: compute consensus of a window

Segmentation strategy

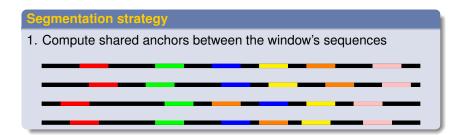
- In practice, we use windows of a few hundred bases
- POA is time consuming, even on such windows
- We developed a segmentation strategy
- $\bullet~$ Compute MSA and consensus for smaller sequences $\Rightarrow~$ faster

Conclusion

Third step: compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the window's sequences



Conclusion

Third step: compute consensus of a window

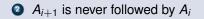
18/31

Conclusion

Third step: compute consensus of a window

Segmentation strategy

- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - A_i is followed by A_{i+1} in at least N sequences
 - 2 A_{i+1} is never followed by A_i



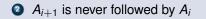
Conclusion

Third step: compute consensus of a window

Segmentation strategy

- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - A_i is followed by A_{i+1} in at least N sequences

19/31

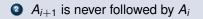


Conclusion

Third step: compute consensus of a window

Segmentation strategy

- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - A_i is followed by A_{i+1} in at least N sequences


Experiments

Conclusion

Third step: compute consensus of a window

Segmentation strategy

- 2. Search for the longest anchors chain such as $\forall A_i, A_{i+1}$:
 - A_i is followed by A_{i+1} in at least N sequences

19/31

Experiments

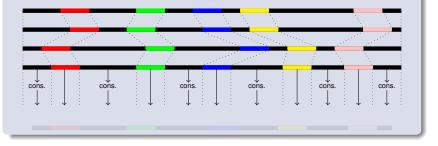
Conclusion

Third step: compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

	i anti anti anti anti anti anti anti ant	1997 <u>,</u> 199		the second second	
			de la constante		
cons.	cons.		cons.	cons.	cons.


Experiments

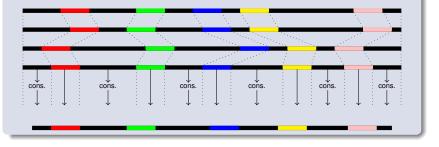
Conclusion

Third step: compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

20/31


Experiments

Conclusion

Third step: compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

Conclusion

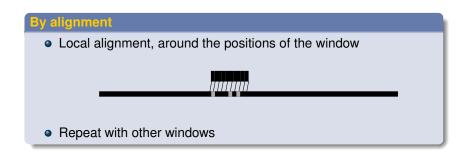
Fourth step: polish the window's consensus

Approach

Consensus ⇒ solid k-mers in uppercase, weak k-mers in lowercase

GATCGGGTcatTGCCCGTGTTTATGCGTgtg

- Build a DBG from the window's sequences
- Correct lowercase regions



Conclusion

Fifth step: anchor the consensus to the read

22/31

CONSENT

Conclusion

Segmentation strategy validation

Results

- Simulated PacBio dataset from E. coli, 50x, 12% error rate
- Simulated with SimLoRD [Stöcker et al., 2016]

	Without segmentation	With segmentation
Throughput	214,667,382	215,693,736
Error rate (%)	0.0757	0.0722
Runtime	5 h 31min	7 min
Memory (MB)	750	675

Conclusion

Comparison to state-of-the-art

Compared tools

- Canu correction module [Koren et al., 2017]
- Daccord [Tischler and Myers, 2017]
- FLAS [Bao et al., 2018]
- MECAT [Xiao et al., 2017]

Workflow

Conclusion

Comparison to state-of-the-art

Datasets

Two real Oxford Nanopore datasets :

Dataset	Number of reads	Average length	Error rate	Coverage
D. melanogaster	1,327,569	6,828	14.57	63x
H. sapiens, chr1 ¹	1,075,867	6,744	17.60	29x
¹ containts ultra-long reads				

Workflow

Conclusion

Comparison to state-of-the-art

Alignment assessment

Dataset	Corrector	Number of reads	Throughput (Mbp)	N50 (bp)	Alignment identity (%)	Genome coverage (%)	Runtime	Memory (MB)
5	Original	1,327,569	9,064	11,853	85.43	98.47	N/A	N/A
melanogaster	Canu	829,965	6,993	12,694	95.20	97.89	14 h 04 min	10,295
	Daccord	-	-	-	-	-	-	-
alar	FLAS	855,275	7,866	11,742	94.99	98.09	10 h 18 min	18,820
D. me	MECAT	849,704	7,288	11,676	96.52	97.34	1 h 54 min	13,443
	CONSENT	1,065,621	8,178	12,297	96.72	98.20	38 h	51,361
H. sapiens	Original	1,075,867	7,256	10,568	82.40	92.46	N/A	N/A
	Canu ¹	-	-	-	-	-	-	-
	Daccord ¹	-	-	-	-	_	-	-
	FLAS ¹	670,708	5,695	10,198	91.00	92.37	4 h 57 min	14,957
	MECAT ¹	667,532	5,479	10,343	91.69	91.44	1 h 53 min	11,075
	CONSENT	869,462	6,349	10,839	93.00	92.40	8 h 30 min	45,869

¹ ultra-long reads were filtered out

Workflow

Conclusion

Comparison to state-of-the-art

Assembly assessment

Dataset	Corrector	Number of contigs	Aligned contigs (%)	NGA50	NGA75	Genome coverage (%)
D. melanogaster	Original	423	96.45	864,011	159,590	83.1900
	Canu	410	92.93	2,757,690	822,577	92.1034
bou	Daccord	-	-	-	-	-
elar	FLAS	374	96.52	1,123,351	364,884	92.1105
me	MECAT	308	99.68	1,425,566	478,877	89.5839
D.	CONSENT	455	98.46	1,666,202	470,720	92.5688
H. sapiens	Original	201	93.53	1,025,355	247,806	77.5700
	Canu ¹	-	-	-	-	-
	Daccord ¹	-	-	-	-	-
	FLAS ¹	237	100	1,698,601	289,968	88.4068
	MECAT ¹	249	99.20	1,672,967	424,788	88.7002
	CONSENT	182	97.25	2,663,412	439,178	88.9587

Conclusion

Additional feature

Contigs polishing

- Allows to correct assemblies generated from raw reads
- Straightforward: compute overlaps between contigs and reads
- Rest of the pipeline remains the same
- First self-correction tool to propose such a feature

Contigs polishing

Experiments

- Simulated PacBio datasets from *E. coli*, *S. cerevisiae* and *C. elegans*
- Simulated with SimLoRD, 60x coverage, 12% error rate
- We compare CONSENT to RACON [Nagarajan et al., 2017]

Dataset	Method	Contigs	Aligned contigs	NGA50	Genome coverage	Errors / 100 kbp	Runtime (CPU sec)	Memory (MB)
	Original	1	1	-	0.89	10,721	N/A	N/A
E. coli	RACON	1	1	4,663,914	99.90	499	5,597	628
	CONSENT	1	1	4,637,588	99.90	78	334	4,192
S. cerevisiae	Original	29	29	-	0.87	10,694	N/A	N/A
	RACON	29	29	539,433	96.09	637	14,931	1,673
	CONSENT	29	29	535,665	96.12	208	1,616	9,232
C. elegans	Original	47	46	-	0.95	10,611	N/A	N/A
	RACON	47	47	5,073,456	99.71	819	136,325	14,264
	CONSENT	47	47	3,737,577	99.57	330	30,907	32,144

Conclusion

Take-home messages

• CONSENT:

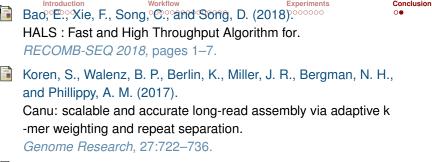
- Self-correction of long reads
- Compares well to the state-of-the-art
- Only method able to scale to ONT ultra-long reads
- Also performs contigs polishing

Specificities:

- Combines two state-of-the-art approaches: MSA + DBG
- Computes actual MSA
- Uses a segmentation strategy to quickly compute MSA

• Availability:

- Software: https://github.com/morispi/CONSENT
- Preprint on bioRxiv: https://doi.org/10.1101/546630



- Optimize the parameters (size of the windows, of the *k*-mers, etc)
- Reduce runtime: deeply covered windows
- Segmentation strategy seems promising \Rightarrow apply it to a greater scale

Lee, C., Grasso, C., and Sharlow, M. F. (2002). Multiple sequence alignment using partial order graphs. *Bioinformatics*, 18(3):452–464.

Li, H. (2018).

Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18):3094–3100.

Nagarajan, N., Mile, Š., Vaser, R., and Sovic, I. (2017).

Fast and accurate de hovo genome assembly from long uncorrected reads.

Conclusion ○●

Genome Research, pages 1-10.

- Stöcker, B. K., Köster, J., and Rahmann, S. (2016). SimLoRD: Simulation of Long Read Data. In *Bioinformatics*, volume 32, pages 2704–2706.
- Tischler, G. and Myers, E. W. (2017). Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly. bioBxiv.
- Xiao, C. L., Chen, Y., Xie, S. Q., Chen, K. N., Wang, Y., Han, Y., Luo, F., and Xie, Z. (2017).

MECAT: Fast mapping, error correction, and de novo assembly for single-molecule sequencing reads.

Nature Methods, 14(11):1072-1074.

31/31