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Introduction

Context
2011: Inception of third generation sequencing technologies

Two main actors: Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (ONT)

Sequencing of much longer reads, tens of kbps on average, up to
1 Mbp (ONT ultra-long reads)

Expected to solve various problem in the genome assembly field
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Introduction

Context
Long reads (LR) are very noisy (10-30% error rate)

Display complex error profiles (errors are mostly indels)

Efficiently handling these error rates is mandatory

Can be done via correction: hybrid or self
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Introduction

Hybrid correction

First efficient approach for LR error correction

Makes use of complementary short reads (SR) data

Different approaches: Alignment of SRs to the LRs, use of a De
Bruijn graph (DBG), ...

Particularly useful on old sequencing experiments (very high
error rates)
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Self-correction
Corrects the LRs solely based on the information they contain

Third generation sequencing technologies evolve fast

Error rates of the LRs now reach 10-12% on average

Error correction is still the first step of many analysis projects

Self-correction is now a viable alternative with such error rates
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Introduction

Self-correction
State-of-the-art:

1 Compute overlaps between the LRs

2 Compute consensus from the overlaps
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Pseudo Multiple Sequence
Alignment (MSA)

Build a directed acyclic graph
(DAG) to represent the
pseudo MSA and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3
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Introduction

Contribution
We introduce CONSENT, a new self-correction method that:

Combines the two previous approaches (MSA + DBG)

Computes actual MSA

Compares well to the state-of-the-art, and scales better

Is also able to polish contigs
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Pre-treatment

Overlap the long reads

Currently with Minimap2 [Li, 2018]

But not dependent on the aligner
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First step: Retrieve alignment piles

Select a long read to correct

A
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First step: Retrieve alignment piles

Retrieve overlapping long reads

A
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First step: Retrieve alignment piles

Get the alignment pile

A

R1 R2

R3 R4

R5 R6
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First step: Retrieve alignment piles

Trim the alignment pile

A

R1 R2

R3 R4

R5 R6
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Second step: Divide piles into windows

Definition

A window w = (beg,end) is a ”factor” of an alignment pile

Example

A

R1 R2

R3 R4

R5 R6

beg end

Morisse et al. CONSENT 15/33



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

Definition

A window w = (beg,end) is a ”factor” of an alignment pile

Example

A

R1 R2

R3 R4

R5 R6

beg end

Morisse et al. CONSENT 15/33



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

For correction, we will only consider windows w = (beg,end) such as:

end−beg+1 = l

∀i,beg ≤ i ≤ end , i is covered by at least c reads

Example

On the previous example, with c = 4:

A

R1 R2

R3 R4

R5 R6
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Third step: Compute consensus of a window

2. Compute consensus

Compute MSA of these sequences

Compute consensus from the MSA

Unlike other methods, actual MSA is computed

⇒ POA [Lee et al., 2002]
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Third step: Compute consensus of a window

POA (Partial Order Alignment)

Multiple sequence alignment strategy based on partial order
graphs

Two interests:

1 Computes actual multiple sequence alignment

2 Directly builds the DAG representing the multiple sequence
alignment
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Third step: Compute consensus of a window

Segmentation strategy

In practice, we use windows of a few hundred bases

POA is time consuming, even on such windows

We developed a segmentation strategy

Compute MSA and consensus for smaller sequences⇒ faster
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Third step: Compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the window’s sequences
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Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai , Ai+1:

1 Ai is followed by Ai+1 in at least N sequences

2 Ai+1 is never followed by Ai
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Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

cons.cons.cons.cons.cons.cons.
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Fourth step: Polish the consensus

Approach

Build a DBG from the window’s sequences

Consensus⇒ solid k -mers in uppercase, weak k -mers in
lowercase

GATCGGGTcatTGCCCGTGTTTATGCGTgtg

Correct lowercase regions

Bordered regions⇒ Traverse the graph to find a path between
solid, anchor k -mers

Extremities⇒ Traverse the graph as much as possible
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Fifth step: Anchor the consensus to the read

By alignment

Get the polished consensus

Locally align it to the LR, around the positions of the window

Repeat with other windows
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Segmentation strategy validation

Results
Simulated PacBio dataset from E. coli, 50x, 12% error rate

Simulated with SimLoRD [Stöcker et al., 2016]

Statistics obtained with LRCstats [La et al., 2017]

Without segmentation With segmentation
Throughput 214,667,382 215,693,736

Error rate (%) 0.0757 0.0722
Runtime 5 h 31min 7 min

Memory (MB) 750 675

Morisse et al. CONSENT 25/33



Introduction Workflow Experiments Conclusion

Comparison to state-of-the-art

Datasets

Dataset Number of reads Average length Error rate Coverage
Simulated Pacific Biosciences data
E. coli 33,918 8,211 12.28 60x
S. cerevisiae 90,397 8,204 12.29 60x
C. elegans 732,832 8,220 12.28 60x
Real Oxford Nanopore data
D. melanogaster 1,327,569 6,828 14.57 63x
H. sapiens, chr1 1,075,867 6,744 17.60 29x

Morisse et al. CONSENT 26/33



Introduction Workflow Experiments Conclusion

Comparison to state-of-the-art

Compared tools

Canu [Koren et al., 2017]

Daccord [Tischler and Myers, 2017]

FLAS [Bao et al., 2018]

MECAT [Xiao et al., 2017]
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Comparison to state-of-the-art

Simulated data
Total

Dataset Corrector Throughput (Mbp) Error rate (%) Deletions (%) Insertions (%) Substitutions (%) Runtime Memory (MB)

E
.c

ol
i

Original 279 12.2788 2.6437 8.7919 0.8432 N/A N/A
Canu 219 0.5211 0.1390 0.4045 0.0243 24 min 3,674
Daccord 261 0.0175 0.0026 0.0062 0.0103 54 min 18,450
FLAS 260 0.1039 0.0907 0.0220 0.0010 38 min 2,428
MECAT 233 0.1011 0.0896 0.0203 0.0008 5 min 2,387
CONSENT 259 0.0590 0,0368 0.0241 0.0037 36 min 4,849

S
.c

er
ev

is
ia

e

Original 742 12.2886 2.6484 8.7963 0.8439 N/A N/A
Canu 600 0.5615 0.1518 0.4309 0.0292 1 h 11 min 3,710
Daccord 696 0.0305 0.0055 0.0180 0.0100 2 h 26 min 32,190
FLAS 690 0.1430 0.1215 0.0319 0.0031 1 h 30 min 4,984
MECAT 617 0.1365 0.1189 0.0286 0.0020 16 min 4,954
CONSENT 690 0.1418 0.0735 0.0650 0,0166 1 h 46 min 11,325

C
.e

le
ga

ns

Original 6,024 12.2825 2.6457 8.7937 0.8432 N/A N/A
Canu 5,112 0.7934 0.2881 0.4107 0.0371 9 h 30 min 7,050
Daccord
FLAS 5,584 0.3997 0.4604 0.1008 0.0224 10 h 45 min 13,682
MECAT 4,938 0.2675 0.2535 0.0402 0.0022 2 h 43 min 10,563
CONSENT 5,604 0.5730 0.3282 0.2273 0.0504 27 h 04 min 32,284

Morisse et al. CONSENT 28/33



Introduction Workflow Experiments Conclusion

Comparison to state-of-the-art

Real data

Dataset Corrector
Number

Throughput (Mbp) N50 (bp)
Aligned Alignment Genome Total

of reads reads (%) identity (%) coverage (%) Runtime Memory (MB)

D
.m

el
an

og
as

te
r Original 1,327,569 9,064 11,853 85.52 85.43 98.47 N/A N/A

Canu 829,965 6,993 12,694 98.05 95.20 97.89 14 h 04 min 10,295
Daccord
FLAS 855,275 7,866 11,742 95.65 94.99 98.09 10 h 18 min 18,820
MECAT 849,704 7,288 11,676 99.87 96.52 97.34 1 h 54 min 13,443
CONSENT 1,065,621 8,178 12,297 99.26 96.72 98.20 38 h 51,361

H
.s

ap
ie

ns

Original 1,075,867 7,256 10,568 88.24 82.40 92.46 N/A N/A
Canu1

Daccord1

FLAS1 670,708 5,695 10,198 99.06 91.00 92.37 4 h 57 min 14,957
MECAT1 667,532 5,479 10,343 99.95 91.69 91.44 1 h 53 min 11,075
CONSENT 869,462 6,349 10,839 99.59 93.00 92.40 8 h 30 min 45,869

1 ultra-long reads were filtered out
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Comparison to state-of-the-art

Contigs polishing
Dataset Method Contigs Aligned contigs NGA50 Genome coverage Errors / 100 kbp Runtime (CPU sec) Memory (MB)

Original 1 1 0.89 10,721 N/A N/A
E. coli RACON 1 1 4,663,914 99.90 499 5,597 628

CONSENT 1 1 4,637,588 99.90 78 334 4,192
Original 29 29 0.87 10,694 N/A N/A

S. cerevisiae RACON 29 29 539,433 96.09 637 14,931 1,673
CONSENT 29 29 535,665 96.12 208 1,616 9,232

Original 47 46 0.95 10,611 N/A N/A
C. elegans RACON 47 47 5,073,456 99.71 819 136,325 14,264

CONSENT 47 47 3,737,577 99.57 330 30,907 32,144
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Take-home messages

CONSENT:

Self-correction of long reads
Compares well to the state-of-the-art
Only method able to scale to ONT ultra-long reads
Also performs contigs polishing

Specificities:

Combines two state-of-the-art approaches: MSA + DBG
Computes actual MSA
Uses a segmentation strategy to quickly compute MSA

Availability:

Software: https://github.com/morispi/CONSENT
Preprint on bioRxiv: https://doi.org/10.1101/546630
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Future works

Optimize the parameters (size of the windows, of k , etc)

Reduce runtime: Deeply covered windows

Segmentation strategy seems promising⇒ Apply it to a greater
scale
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