Impact of the dataset characteristics on the quality of long read error correction

Pierre Morisse¹, Arnaud Lefebvre², Thierry Lecroq²

¹Normandie Université, UNIROUEN, INSA Rouen, LITIS, 76000 Rouen, France. ²Normandie Université, UNIROUEN, LITIS, Rouen 76000, France.

> SeqBIM 2019 Marne-La-Vallée December 17th

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Olitis					
V) Hild	Plan				

- 2 Hybrid correction
- 3 Self-correction
- Available methods
- 5 Experiments

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction Hybrid correct	ion Self-correction			
Olitis					

- 2 Hybrid correction
- 3 Self-correction
- Available methods
- 5 Experiments
- 6 Conclusion

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction Hybrid correctio	n Self-correction			
Olitis					
	Context				

- 2011: Inception of third generation sequencing technologies
- Two main actors: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)
- Sequencing of much longer reads, tens of kbps on average
- Expected to solve various problem in the genome assembly field
- But also very noisy (10-30% error rates), most errors being indels

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction Hybrid correction	n Self-correction			
Olitis					
	Error corre	ection			

- Correction: efficient way to handle these errors
- Two approaches:
 - Hybrid correction (makes use of complementary short reads)
 - Self-correction (corrects the long reads solely based on the information they contain)

Introduction	Hybrid c	orrection	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction	Hybrid correction	Self-correction			
Olitis						
() lific	Ну	brid cor	rection			

- Long reads + short reads, sequenced for the same individual
- Use the short reads to correct the long reads
- SOTA \Rightarrow 4 approaches:
 - Short reads alignment
 - 2 Contigs alignement
 - Oe Bruijn graphs
 - Hidden Markov models

Introduction	Hybrid co	orrection S	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction	Hybrid correction	Self-correction			
Olitis						
()) ilic	Sel	lf-correc	tion			

- Only uses the information contained in the long reads
- Recent developments
- Third generation sequencing technologies evolve fast:
 - Decrease of the error rates (10-12%)
 - Increase of the read length (ultra-long reads ONT > 1 Mbp)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Long reads	Error correction Hybrid correction	Self-correction			
Olitis					
	Self-corre	ction			

SOTA:

- Overlap the long reads
- Compute consensus from the overlaps
- Two approaches:

Pseudo multiple sequence alignment (MSA)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads align	ments Contigs alignments	De Bruijn graphs			
Olitis					

- 2 Hybrid correction
- 3 Self-correction
- Available methods
- 5 Experiments
- 6 Conclusion

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Hybrid co	orrection			

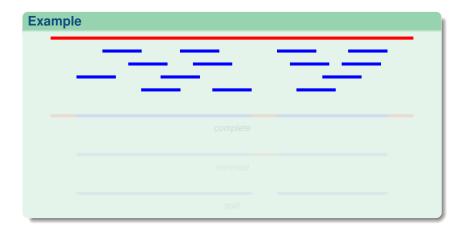
- Short reads alignment
- 2 Contigs alignement
- Oe Bruijn graphs
- Hidden Markov models

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
()THC	Hybrid co	orrection			

- Short reads alignment
- Contigs alignement
- Oe Bruijn graphs

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	nments Contigs alignments	De Bruijn graphs			
Olitis					
()1410	Short rea	ds alignm	nents		

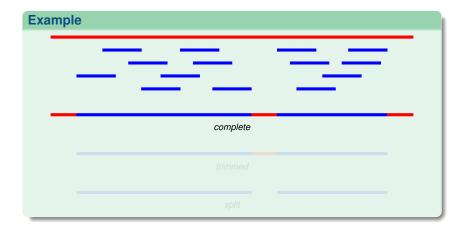
- First hybrid correction approach
- Align the short reads to the long reads
- Define MSA from the shorts reads
- Use the MSA to compute consensus



Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
CURIC	Short rea	ds alignm	nents		

Example	e	
	split	J

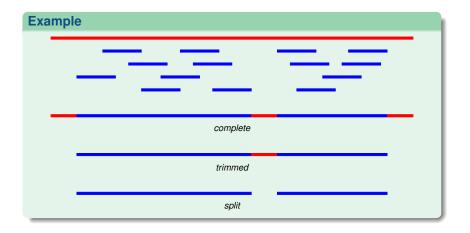
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Short rea	ds alignm	nents		



Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Short rea	ds alignm	nents		

Example	9	-
	complete	-
	split	

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	nments Contigs alignments	De Bruijn graphs			
Olitis					
() I Hic	Short rea	ds alignm	nents		



Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	nments Contigs alignments	De Bruijn graphs			
Olitis					
()144C	Short rea	ds alignm	nents		

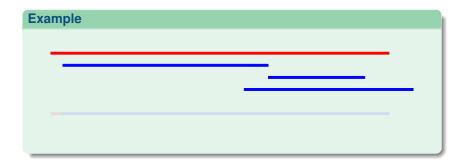
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	nments Contigs alignments	De Bruijn graphs			
Olitis					
()144C	Short rea	ds alignm	nents		

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads ali	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Hybrid co	orrection			

- Short reads alignment
- Ontigs alignement
- Oe Bruijn graphs

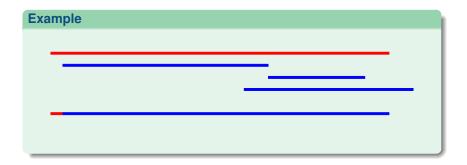
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Contigs a	lignment			

- Contigs are much longer than short reads
- Easier to cover highly noisy regions of the long reads
- Build contigs from the short reads
- Align the contigs and the long reads
- Define MSA and compute consensus



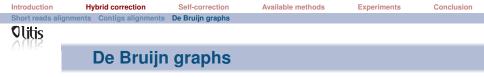
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads ali	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Contigs a	lignment	t		

Example			
			_



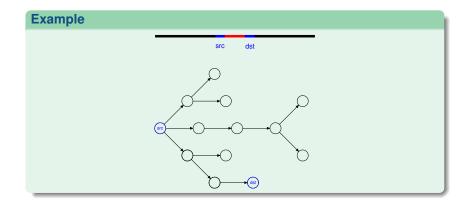
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Contigs a	alignment			

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	Contigs a	alignment			

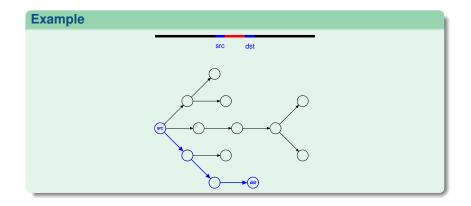


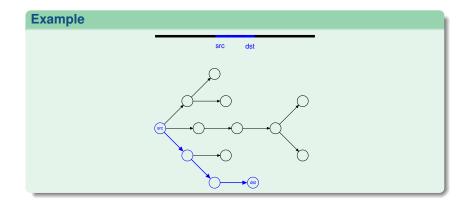
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads ali	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hite	Hybrid co	prrection			

- Short reads alignment
- Contigs alignement
- Oe Bruijn graphs


- Build the graph from the short reads solid *k*-mers
- Anchor the long reads to the graph
- Correct weak *k*-mer regions of the long reads with the graph

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
	gnments Contigs alignments	De Bruijn graphs			
Olitis					
	De Bruijr	n graphs			
Exa	mple				
	(


Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads ali	gnments Contigs alignments	De Bruijn graphs			
Olitis					
	De Bruijn				


Morisse et al.

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads ali	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	De Bruijn				

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Short reads alig	gnments Contigs alignments	De Bruijn graphs			
Olitis					
() Hic	De Bruijn				

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					

- 2 Hybrid correction
- **3** Self-correction
 - Available methods
- 5 Experiments
- 6 Conclusion

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Self-corr	ection			

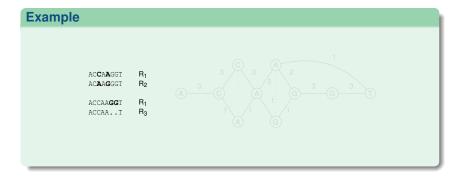
Pseudo MSA

2 De Bruijn graphs

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Self-corr	ection			

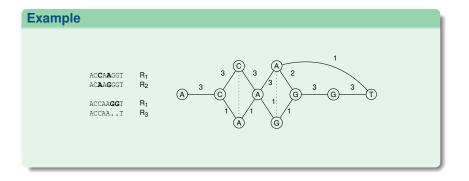
Pseudo MSA

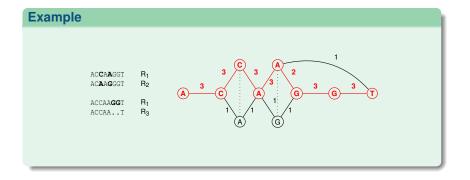
Oe Bruijn graphs



Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Pseudo	MSA			

- Overlap the long reads
- Build a directed acyclic graph (DAG) to summarize the overlaps
- The DAG represents a pseudo MSA
- Compute consensus by extracting the highest weighted path


Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Pseudo	MSA			


Morisse et al.

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Pseudo	MSA			

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Pseudo	MSA			

Morisse et al.

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	Self-corr	ection			

Pseudo MSA

2 De Bruijn graphs

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Pseudo MSA	De Bruijn graphs				
Olitis					
	De Bruiji	n graphs			

- Overlap the long reads
- Divide the overlaps into small windows
- Build a DBG for each window
- Correct the windows with the DBGs

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion				
Pseudo MSA	De Bruijn graphs								
Olitis									
	De Bruijn graphs								

Example .GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1 TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2 GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1 TATTTCTG..AT.GCGC.TGACTTTCTTGGCAG R3

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion				
Pseudo MSA	De Bruijn graphs								
Vlitis									
()THPO	De Bruijn graphs								
Exa	ample								
		.GATCGGGTAT.TGCCCGT IGTTCAGGCAAATATGGA							

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG

 R_1

 R_3

Introduction	Hybrid correc	tion	Self-correction	Available methods	Experiments	Conclusion
Hybrid correction	Self-correction	Summary				
Olitis						

Introduction

- 2 Hybrid correction
- **3** Self-correction
- Available methods
- 5 Experiments
- 6 Conclusion

 Introduction
 Hybrid correction
 Self-correction
 Available methods
 Experiments
 Conclusion

 Hybrid correction
 Self-correction
 Summary
 Iteration
 Iteration

Hybrid correction

Method	Approach	Release
PBcR	SR alignment	2012
LSC	SR alignment	2012
ECTools	Contigs alignment	2014
LoRDEC	DBG	2014
Proovread	SR alignment	2014
Nanocorr	SR alignment	2015
NaS	SR alignment	2015
CoLoRMap	SR alignment	2016
Jabba	DBG	2016
LSCplus	SR alignment	2016
HALC	Contigs alignment	2017
HECIL	SR alignment	2017
Hercules	Hidden Markov models	2017
FMLRC	DBG	2018
MiRCA	Contigs alignment	2018
HG-CoLoR	SR alignment + DBG	2018

16 methods

Introduction	Hybrid correc	tion	Self-correction	Available methods	Experiments	Conclusion
Hybrid correction	Self-correction	Summary				
Olitis						

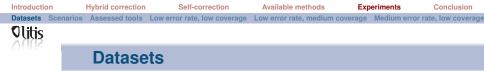
Method	Approach	Release
PBcR-BLASR	Pseudo MSA	2013
PBDAGCon	Pseudo MSA	2013
Sprai	Pseudo MSA	2014
PBcR-MHAP	Pseudo MSA	2015
FalconSense	Pseudo MSA	2016
Sparc	Pseudo MSA	2016
Canu	Pseudo MSA	2017
Daccord	DBG	2017
LoRMA	DBG	2017
MECAT	Pseudo MSA	2017
FLAS	Pseudo MSA	2018
CONSENT	Pseudo MSA + DBG	2019

12 methods

- Today: 28 available methods
- Each of them claims to be the best...
- ... But what is the truth?

- Datasets charasteristics have huge impacts on correction:
 - Read length
 - Error rate
 - Coverage
 - Organism complexity

Introductio	on	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium	coverage Medium	error rate, low coverage
Vitis						


Introduction

- 2 Hybrid correction
- 3 Self-correction
- Available methods

6 Conclusion

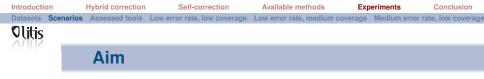
We gathered a wide variety of datasets having varying:

- Complexity (from bacteria to human)
- Sequencing technologies (PB and ONT)
- Error rates (12 to 44%)
- Coverages (20x to 100x)
- Read length (few kbps to few hundreds of kbps)

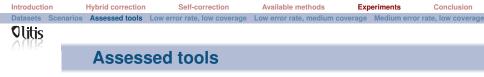
Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium co	verage Medium error i	ate, low coverage

Datasets

Dataset	Number of reads	Error rate	Coverage	Number of bases					
Simulated PacBio data									
E. coli 20x	11,306	18.60	20x	93 Mbp					
S. cerevisiae 20x	30,132	18.60	20x	247 Mbp					
C. elegans 20x	244,277	18.60	20x	2,004 Mbp					
E. coli 30x	16,959	12.28	30x	140 Mbp					
S. cerevisiae 30x	45,198	12.28	30x	371 Mbp					
C. elegans 30x	366,416	12.28	30x	3,006 Mbp					
E. coli 60x	33,918	12.28	60x	279 Mbp					
S. cerevisiae 60x	90,397	12.28	60x	742 Mbp					
C. elegans 60x	732,832	12.28	60x	6,011 Mbp					
Real ONT data	Real ONT data								
A. baylyi	89,011	29.91	106x	381 Mbp					
S. cerevisiae	205,923	44.51	95x	1,173 Mbp					
H. sapiens ¹	1,075,867	17.60	29x	7,256 Mbp					


¹ contains ONT ultra-long reads (up to 340 kbp)

Introduction	1	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Sc	enarios	Assessed tools	Low error rate, low coverage	Low error rate, medium c	overage Medium erro	r rate, low coverage
Olitis						
		Scenar	ios			


- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

- For each scenario, identify:
 - Is hybrid correction or self-correction more suited?
 - Which method does perform the best?

To lighten the presentation, we only assess:

Hybrid correction:

CoLoRMap

HG-CoLoR

LoRDEC

Self-correction:

CONSENT

Daccord

MECAT

- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium co	overage Medium error i	ate, low coverage

Low error rate and low coverage

	Metric	CoLoRMap	HG-CoLoR	LoRDEC	CONSENT	Daccord	MECAT
	Number of bases (Mbp)	134	131	131	130	131	107
ă	Error rate (%)	0.1137	0.0726	0.0695	0.3350	0.0248	0.2569
coli 30x	Recall (%)	99.9881	99.9986	99.9831	99.9419	99.9965	99.9302
S	Precision (%)	99.8880	99.9279	99.9328	99.6701	99.9757	99.7533
щ	Runtime	1 h 33 min	1 h 20 min	12 min	17 min	14 min	2 min
	Memory (MB)	13,097	1,538	460	2,212	6,813	1,600
ŏ	Number of bases (Mbp)	343	347	348	344	348	285
cerevisiae 30x	Error rate (%)	0.3183	0.5115	0.3990	0.4258	0.1259	0.3040
sia	Recall (%)	99.9135	99.9592	99.8123	99.9296	99.9874	99.9160
evi,	Precision (%)	99.6860	99.4937	99.6093	99.5807	99.8762	99.7072
09	Runtime	4 h 36 min	7 h 20 min	35 min	47 min	1 h 19 min	5 min
S.	Memory (MB)	14,243	3,656	799	5,514	31,798	2,907
×	Number of bases (Mbp)	1,198	2,795	2,824	2,787	-	2,084
30x	Error rate (%)	0.8955	1.1664	1.2710	0.6720	-	0.3908
elegans	Recall (%)	99.9165	99.9104	99.4191	99.8970	-	99.8903
egi	Precision (%)	99.1230	98.4889	98.7441	99.3378	-	99.6212
	Runtime	150 h 21 min	108 h 26 min	11 h 30 min	7 h 54 min	-	48 min
Ċ.	Memory (MB)	32,267	27,212	2,320	16,772	> 250,000	10,535

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scer	narios Assessed tools	Low error rate, low coverage	Low error rate, medium c	overage Medium erro	r rate, low coverage
Olitis					
() Lilic	Summa	ary			

	Bacterial	Small eukaryotic	Larger eukaryotic	
Low error rate,	Both. Daccord	Both. Daccord	Self. MECAT	
low coverage	Botti, Daccolu	Botti, Daccoru	Sell, MECAI	

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Sc	enarios Assessed tools	Low error rate, low coverage	Low error rate, medium cov	erage Medium erro	or rate, low coverage
Olitis					
() Hic	Scena	rios			

- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium covera	ge Medium error	rate, low coverage

Low error rate and medium coverage

	Metric	CoLoRMap	HG-CoLoR	LoRDEC	CONSENT	Daccord	MECAT
-	Number of bases (Mbp)	266	262	261	259	261	233
č	Error rate (%)	0.1621	0.0771	0.0684	0.1799	0.0214	0.1714
<i>coli</i> 60x	Recall (%)	99.9631	99.9987	99.9832	99.9801	99.9971	99.9547
S	Precision (%)	99.8400	99.9234	99.9339	99.8229	99.9790	99.8362
Щ	Runtime	3 h 01 min	2 h 03 min	20 min	37 min	54 min	5 min
	Memory (MB)	19,898	2,744	457	4,913	18,450	2,387
ŏ	Number of bases (Mbp)	664	690	696	688	695	616
cerevisiae 60x	Error rate (%)	0.6143	0.5995	0.3984	0.2812	0.0400	0.2088
sia	Recall (%)	99.7755	99.9433	99.8136	99.9582	99.9928	99.9428
evi	Precision (%)	99.3917	99.4059	99.6100	99.7231	99.6906	99.7996
cel	Runtime	8 h 08 min	12 h 23 min	1 h 09 min	1 h 49 min	2 h 26 min	16 min
S.	Memory (MB)	24,375	7,297	794	11,335	23,190	4,954
×	Number of bases (Mbp)	-	-	5,657	5,586	-	4,938
60x	Error rate (%)	-	-	1.2731	0.3806	-	0.2675
elegans	Recall (%)	-	-	99.4201	99.9489	-	99.9258
egć	Precision (%)	-	-	98.7420	99.6254	-	99.7415
	Runtime	> 250 h	> 200 h	23 h 30 min	19 h 13 min	-	2 h 43 min
Ċ.	Memory (MB)	-	-	2,332	15,607	> 250,000	10,563

Introducti	on	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium cov	verage Medium erro	r rate, low coverage
Olitis						

	Bacterial	Small eukaryotic	Larger eukaryotic	
Low error rate,	Both, Daccord	Both. Daccord	Self. MECAT	
low coverage	Boun, Daccord	Both, Daccold	Sell, WECAI	
Low error rate,	Both. Daccord	Self. Daccord	Self. MECAT	
medium coverage	Boun, Daccolu	Sell, Daccolu	Sell, MECAI	

Intro	ductio	on	Hybrid correction	Self-correction	Available methods	Exp	eriments	Conclusion
Data	sets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium of	overage	Medium erro	r rate, low coverage
ົດເ	itis							
			Scenar	rios				

- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	s Assessed tools	Low error rate, low coverage	Low error rate, medium cov	erage Medium error r	ate, low coverage

Medium error rate and low coverage

	Metric	CoLoRMap	HG-CoLoR	LoRDEC	CONSENT	Daccord	MECAT
	Number of bases (Mbp)	81	84	78	61	84	59
ă	Error rate (%)	0.1946	0.0691	0.1474	8.5423	0.3965	0.5243
<i>coli</i> 20x	Recall (%)	99.9890	99.9982	99.9890	97.9155	99.8817	99.8317
g	Precision (%)	99.8118	99.9315	99.8570	91.5687	99.6077	99.4915
Щ	Runtime	1 h 25 min	51 min	8 min	8 min	24 min	26 sec
	Memory (MB)	6,659	1,517	455	1,552	4,538	1,322
ŏ	Number of bases (Mbp)	211	220	188	166	222	162
9 9	Error rate (%)	0.2655	0.2959	0.5400	8.2652	0.5447	0.6555
cerevisiae 20x	Recall (%)	99.9805	99.9900	99.9483	98.0349	99.8591	99.8015
evi	Precision (%)	99.7413	99.7071	99.4730	91.8483	99.4630	99.3636
cer	Runtime	4 h 42 min	4 h 55 min	28 min	22 min	1 h 10 min	1 min
Ś	Memory (MB)	13,544	3,237	799	4,514	14,111	2,207
×	Number of bases (Mbp)	517	1,726	1,155	1,359	-	871
20X	Error rate (%)	2.6255	0.6524	1.2643	9.5548	-	0.6540
elegans	Recall (%)	99.8445	99.9682	99.8871	97.9553	-	99.8196
egé	Precision (%)	99.4526	99.3554	98.7542	90.5794	-	99.3597
	Runtime	125 h 44 min	88 h 10 min	6 h 01 min	3 h 49 min	-	18 min
Ċ.	Memory (MB)	32,188	19,730	2,238	14,522	-	10,340

Introducti	on	Hybrid correction	Self-correction	Available methods	Exp	eriments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium	coverage	Medium erro	r rate, low coverage
Olitis	_						

	Bacterial	Small eukaryotic	Larger eukaryotic	
Low error rate,	Both, Daccord	Both, Daccord	Self, MECAT	
low coverage	Dotti, Daccolu	Dotti, Daccolu	Sell, MECAI	
Low error rate,	Both. Daccord	Self. Daccord	Self. MECAT	
medium coverage	Botti, Baccola	Ben, Baccolu	Cell, MILOAI	
Medium error rate,	Hybrid, HG-CoLoR	Hybrid, CoLoRMap	Hybrid, HG-CoLoR	
low coverage		Tybria, Coconimap	Hybrid, HG-COLOR	

Introductio	n	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium co	verage Medium erro	r rate, low coverage
Olitis						
() Hic		Scenar	rios			

- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium cove	erage Medium error	rate, low coverage

High error rate and high coverage

	Metric	CoLoRMap	HG-CoLoR	LoRDEC	CONSENT	Daccord	MECAT
	Number of bases (Mbp)	141	285	175	183	175	154
real	Mean length (bp)	3,882	11,156	3,449	10,815	3,244	9,186
'Yi'	Error rate (%)	0.4921	0.0240	0.0552	8.0530	6.7454	8.5324
baylyi ı	Genome overage (%)	100.0000	100.0000	100.0000	100.0000	100.0000	100.0000
A. Ł	Runtime	3 h 41 min	1 h 34 min	16 min	48 min	43 min	23 min
	Memory (MB)	13,028	3,750	436	5,150	25,801	9,978
al	Number of bases (Mbp)	165	512	221	179	-	84
e re	Mean length (bp)	2,294	6,725	1,125	7,186	-	5,668
<i>cerevisiae</i> real	Error rate (%)	0.3042	0.2824	1.1832	23.2735	-	19.9237
evi	Genome coverage (%)	99.1528	99.5341	98.8934	98.1075	-	92.6533
cer	Runtime	10 h 44 min	8 h 51 min	1 h 09 min	40 min	-	14 min
S.	Memory (MB)	18,241	11,575	797	14,663	> 250,000	7,374

Introducti	on	Hybrid correction	Self-correction	Available methods	Exp	eriments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium of	overage	Medium error	rate, low coverage
0 1:1:							

	Bacterial	Small eukaryotic	Larger eukaryotic	
Low error rate,	Both. Daccord	Both. Daccord	Self, MECAT	
low coverage	Botti, Daccoru	Botti, Daccoru	Sen, MECAI	
Low error rate,	Both, Daccord	Self. Daccord	Self. MECAT	
medium coverage	Dotti, Daccolu	Sell, Daccolu	Sell, MECAI	
Medium error rate,	Hybrid, HG-CoLoR	Hybrid, CoLoRMap	Hybrid, HG-CoLoR	
low coverage		Tybria, Coconinap	Hybrid, HG-COLOR	
High error rate,	Hybrid, HG-CoLoR	Hybrid, HG-CoLoR		
high coverage	Hybrid, HG-COLOR	Hybrid, HG-COLOR	-	

Introductio	n	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets	Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium co	verage Medium erro	r rate, low coverage
Olitis						
() Hic		Scenar	rios			

- Low error rate and low coverage
- Low error rate and medium coverage
- Medium error rate and low coverage
- High error rate and high coverage
- Ultra-long reads (medium error rate)

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium	coverage Medium	error rate, low coverage
Olitis					

	Metric	CoLoRMap	HG-CoLoR	LoRDEC	CONSENT	Daccord	MECAT
	Number of bases (Mbp)	1,511	6,553	6,851	6,349	-	-
SL	Mean length (bp)	3,603	6,754	6,368	7,301	-	-
sapiens	Error rate (%)	3.5498	1.1958	8.2795	6.9996	-	-
saj	Genome coverage (%)	91.9475	92.4523	92.4693	92.3993	-	-
Ľ	Runtime	304 h 10 min	167 h 47 min	12 h 52 min	8 h 29 min	-	-
	Memory (MB)	80,613	50,898	7,902	17,350	-	-

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Datasets Scenarios	Assessed tools	Low error rate, low coverage	Low error rate, medium	coverage Medium error	r rate, low coverage

Bacterial	Small eukaryotic	Larger eukaryotic
Both Decord	Both Dessard	Salf MECAT
Both, Daccord	Bour, Daccord	Self, MECAT
Both Decoord	Solf Decoord	Self, MECAT
Dotti, Daccolu	Sell, Daccolu	Sell, MECAI
Hubrid HC Cal aB	Hubrid Col o DMon	Hybrid, HG-CoLoR
Hybrid, HG-COLOR	Hybrid, Coloniviap	Hybrid, HG-COLOR
	Hybrid HC Col oP	
Hybrid, HG-COLOR	Hybrid, HG-COLOR	-
	Bacterial Both, Daccord Both, Daccord Hybrid, HG-CoLoR Hybrid, HG-CoLoR	Both, Daccord Both, Daccord Both, Daccord Self, Daccord Hybrid, HG-CoLoR Hybrid, CoLoRMap

Ultra-long reads Most self-correction methods do not scale... Hybrid, or CONSENT

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Olitis					

- 2 Hybrid correction
- 3 Self-correction
- Available methods
- 5 Experiments
- 6 Conclusion

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion		
Olitis							
()) Hic	Take home messages						

- Lots of error correction methods
- Each of them can be the best... ... on a particular dataset
- We provide a few guidelines:
 - Low coverage: self-correction performs quite well
 - Complex organism: self-correction (Daccord is quickly limited \Rightarrow CONSENT? MECAT?)
 - High error rate: hybrid correction (HG-CoLoR)
 - Fast: self-correction \Rightarrow MECAT (but LoRDEC is not so slow)
 - Ultra-long reads: hybrid correction or CONSENT

Introduction	Hybrid correction	Self-correction	Available methods	Experiments	Conclusion
Olitis					
() Hic	Future w	ork			

- Add new datasets:
 - Medium error rate with higher coverage: does self-correction perform better?
 - Low error rate and extremely low coverage (10x): can self-correction still work?

