## ELECTOR: Evaluator for long reads correction methods

Camille Marchet ${ }^{1,}$, Pierre Morisse ${ }^{2,}$, Lolita Lecompte ${ }^{3}$, Antoine Limasset ${ }^{1}$, Arnaud Lefebvre ${ }^{2}$, Thierry Lecroq ${ }^{2}$, Pierre Peterlongo ${ }^{3}$

${ }^{1}$ Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL.<br>${ }^{2}$ Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France.<br>${ }^{3}$ Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France.

SeqBio 2018

## Introduction: errors in long reads

## Context

- Long reads : fast evolving field but error rates remain high
- Need quality for assembly, variant calling, ...


From [Rang et al. 2018]

## Introduction: correction assessment

Ever-increasing list of correction methods:

- 2012: 3
- 2013: 1
- 2014: 3
- 2015: 2
- 2016: 4
- 2017: 7
- 2018: 3
"Which tool better performs on my problem ?"
A lost bioinformatician
"My corrector works on this ATTAGATTAC toy example so it should do the job."

Pierre M., anonymous overly confident developer
"Let's do something!"
C3G MASTODONS long read correction group

## Introduction: correction assessment

- Only one tool (LRCstats [La et al. 2017])
- Rather slow
- Number of metrics displayed could be increased

Correction quality assessment objectives

- Handle most of the correctors
- Quick (time $\simeq$ correction step's time)
- Scalable
- Reproducible
- Easy to include in benchmarks
- Information for users and developers


## Introduction: long reads correction methods

## Hybrid

- Mapping short reads/assembled short reads on long reads
- Map LR on paths of graph of short reads


## Self

- Produce consensus from LR by multiple mapping on a template LR
- Map LR on paths of graph of LR
- Produce consensus from LR using graphs built from the reads' $k$-mers


## Corrected reads

- Can be missing
- Can be trimmed (shorter than the original)
- Can be split (separated in several corrected fragments)
- Can be elongated (longer on left or right end by bringing some context of the graph)


## Main idea: compare different versions of a read



Multiple sequence alignment of triplets

- advantages: access recall/precision
- difficulty: scaling
- solution: MSA segmentation


## ELECTOR: Overview



## Main contributions of ELECTOR w.r.t. LRCstats

|  | ELECTOR | LRCstats |
| :---: | :---: | :---: |
| error rate | $\checkmark$ | $\checkmark$ |
| recall | $\checkmark$ | * |
| precision | $\checkmark$ | * |
| deletions | $\checkmark$ | $\checkmark$ |
| insertions | $\checkmark$ | $\checkmark$ |
| substitutions | $\checkmark$ | $\checkmark$ |
| split reads | $\checkmark$ | $\checkmark$ |
| mean missing size | $\checkmark$ | * |
| \%GC before/after correction | $\checkmark$ | * |
| ratio correction in homopolymers | $\checkmark$ | * |
| remapping stats | $\checkmark$ | * |
| assembly stats | $\checkmark$ | * |

+ decreased running time


## Segmented multiple sequence alignment

## MSA segmentation

- Same idea as Pierre's talk (LoRSCo)
- For triplet of sequences
- Alignment method: POA [Lee et al. 2002]
- Added feature: handle large gaps
set of common, colinear seeds ( $k$-mers)



## Issue with large gaps

## Segmentation MSA rules

Mainly for efficiency:
(1) If a corrected read is extremely short: do not align, report
(2) If the set of seeds is very small (corrected and reference are very dissimilar): do not align, report
In both cases we cannot segment and would have to perform the regular MSA: too long

## Issue with trimmed/split reads

reference R
uncorrected U
split/trimmed corrected C

small, efficient MSAs
long, time consuming MSA

## Handling large gaps

reference R
uncorrected U
split/trimmed corrected C


1-detect shorter corrected read


## Validation of MSA segmentation

- Simulated datasets from E. coli
- "1k" experiment: 1 k mean length, $10 \%$ error rate, coverage of 100 X
- "10k" experiment: 10k mean length, $15 \%$ error rate, coverage of 100X
- Corrected with MECAT

| Experiment | Recall | Precision | Correct bases | Time |
| :--- | :---: | :---: | :---: | :---: |
| "1k" MSA | $\mathbf{9 3 . 9 6} \%$ | $\mathbf{9 3 . 4 8} \%$ | $\mathbf{9 7 . 6 4} \%$ | 11 h |
| "1k" segmentation + MSA | $\mathbf{9 3 . 8 1 \%}$ | $\mathbf{9 3 . 5 1 \%}$ | $\mathbf{9 7 . 6 3 \%}$ | 38 min |
| "10k" MSA | $84.51 \%$ | $\mathbf{8 8 . 3 5} \%$ | $\mathbf{9 5 . 2 9} \%$ | 107 h |
| "10k" segmentation + MSA | $\mathbf{8 4 . 5 9} \%$ | $\mathbf{8 8 . 2 8} \%$ | $\mathbf{9 5 . 2 5} \%$ | 42 min |

- Orders of magnitude speed-up
- Similar metrics values


## Metrics computation: indels

reference R ACT-GTTTGA-CTTTG-CTGAT
uncorrected U -CTTATT-GAACT-GT-T--TC
corrected C ACTT-TT-GAACTTTGTCAGAT
deletion in uncorrected
$\square$ insertion in uncorrected
substitution in uncorrected
deletion in corrected insertion in corrected substitution in corrected

## Metrics computation: split/trimmed/extended

## Trimmed

| reference R | ACT-GTTTG ... ATTGTCTGAT |
| :---: | :---: |
| uncorrected $U$ | -CTTGTT-G ... AT-GTCT--T |
| corrected C | --................-ATTGTCAGAT |



## Extended

| reference $R$ | - ACT-GTTTG | ATTGTCTGAT |
| :---: | :---: | :---: |
| uncorrected $U$ | -CTTGTT-G | AT-GTCT--T |
| corrected C | TCTCTGGTATTAGTTAACT-TTTTG | -TTGTCAGAT |

## Metrics computation: recall/precision

reference R ACT-GTTTGA-CTTTG-CTGAT
uncorrected U GCCTGT-TGGACT--GTCAG-T
corrected C ACTTGTTTGAATTTTGTCAGAT

- positions to correct $(n t(R)!=n t(U))$
corrected positions ( $n t(R)!=n t(U) O R n t(C)!=n t(R))$
corrected positions such that $n t(C)==n t(R)$ corrected positions such that $n t(C)!=n t(R)$
 Precision $=\frac{+}{\square}$


## Metrics computation: recall/precision in modified reads

Trimmed


Split


Positions taken into account to compute recall/precision
(for split reads, recall precision are output w.r.t. whole read)

## Extended

| reference R | - - .-............-ACT-GTTTG | ATTGTCTGAT |
| :---: | :---: | :---: |
| uncorrected U | --...............-. CTTGTT-G | AT-GTCT--T |
| corrected C | TCTCTGGTATTAGTTAACT-TTTTG | - TTGTCAGAT |

+ reported extended length


## Validation of MSA for computing metrics

## Simulation for ground truth

- Data: 1X and 10X E. coli
- Errors: $15 \%$ and $20 \%$ errors
- Simulated correction

Compare ELECTOR results and ground truth for 10X:

| metric | ELECTOR | difference (\% ground truth) |
| :--- | :---: | :---: |
| recall(\%) | 98.99 | $4.0 \mathrm{E}-2$ |
| precision(\%) | 99.92 | $1.0 \mathrm{E}-1$ |
| error rate | $9.920 \mathrm{E}-2$ | 2.3 |
| indels/mismatches in uncorrected | 8380984 | 4.1 |
| indels/mismatches in corrected | 491728 | 3.4 |

## Results : data sets / correctors

| Dataset | A. baylyi | E. coli | S. cerevisiae |
| :--- | :---: | :---: | :---: |
| Reference organism |  |  |  |
| Genome size | 3.6 Mbp | 4.6 Mbp | 12.2 Mbp |
| Simulated Pacific |  |  |  |
| Niosciences data |  |  |  |
| Number of reads | 8,765 | 11,306 | 30,132 |
| Average length | 8,202 | 8,226 | 8,204 |
| Number of bases | 72 Mbp | 93 Mbp | 247 Mbp |
| Coverage | 20 x | 20 x | 20 x |
| lllumina data |  |  |  |
| Source | ERR788913 | Genoscope | Genoscope |
| Coverage | 50 x | 50 x | 50 x |

List of correctors
CoLoRMap, HALC, HG-CoLoR, Jabba, LoRDEC, Nanocorr, NaS, Canu, Daccord and LoRMA

## Results: running time

| Method | CoLoRMap | Nanocorr | Daccord | Jabba |
| :--- | :---: | :---: | :---: | :---: |
| A. baylyi |  |  |  |  |
| Corrector | 57 min | 2 h 52 min | 20 min | 2 min |
| LRCstats | 3 h 59 min | 3 h 44 min | 3 h 58 min | 4 h 02 min |
| ELECTOR | 1 h 07 min | 11 min | 5 min | 1 h 19 min |
| E. Coli |  |  |  |  |
| Corrector | 1 h 25 min | 3 h 17 min | 27 min | 2 min |
| LRCstats | 4 h 57 min | 3 h 56 min | 4 h 20 min | 5 h 12 min |
| ELECTOR | 1 h 21 min | 14 min | 15 min | 32 min |
| S. cerevisiae |  |  |  |  |
| Corrector | - | - | - | 5 min |
| LRCstats | - | - | - | 12 h 01 min |
| ELECTOR | - | - | - | 2 h 15 min |

High speed-up in comparison to LRCstats

## Results: comparison to LRCstats

|  | Nanocorr |  | daccord |  |
| :---: | :---: | :---: | :---: | :---: |
| Error rate | $\frac{\text { ELECTOR }}{0.339}$ | $\frac{\text { LRCstats }}{}$ |  | ELECTOR |
| Recall | 0.3983 | $\frac{\text { LRCstats }}{0.422}$ | 0.4498 |  |
| Precision | 0.98503 | - | 0.98836 | - |
| Deletions | 46,596 | 56,708 | 58,110 | 72,547 |
| Insertions | 237,798 | 279,970 | 306,930 | 336,686 |
| Substitutions | 143,605 | 45,783 | 72,265 | 25,643 |
| Trimmed / split reads | 1,612 | - | 123 | - |
| Mean missing size | 341 | - | 3,026 | - |
| Time | $\mathbf{1 4 m i n}$ | $3 \mathrm{h52}$ | $\mathbf{1 5 m i n}$ | 3 h 50 |

## Results: comparison to LRCstats


positions taken into account for uncorrecte error rate/indel/mismatches computing

## Conclusion \& Perspectives

## Conclusion

- Fast assessing of a corrector's results
- Many metrics: recall/precision/indels/trimmed/split reads/assembly/remapping. . .
- A limitation: a reference genome is required
- Innovative developments in segmentation for fast MSA computing


## Perspectives

- Results on larger genomes \& real data to come
- Support RNA-seq (https://gitlab.com/leoisl/LR_EC_analyser)
- Assess variant calling

Availability: https://github.com/kamimrcht/ELECTOR

## Acknowledgements

- SeqBio committees
- GenScale team
- BONSAI team
- TIBS Team
- C3G MASTODONS

Homopolymer detection $>$ T
reference ACT-GTTTGAAAAAAA---TTTGTCTGAT
erroneous -CTTGTT-GAAAAAAAAAAAT-GTCT--T
corrected ACTTGTTTGAAAAAA…-TTTGTCAGAT

