
LoRSCo: Long Reads Self-Correction

Pierre Morisse 1, Camille Marchet 2, Antoine Limasset 2,
Arnaud Lefebvre 1, Pierre Peterlongo 3, Thierry Lecroq 1

1Normandie Univ, UNIROUEN, LITIS, Rouen 76000, France.
2Lille Univ, CNRS, Inria, CRIStAL, Lille 59000, France.

3Univ Rennes, CNRS, Inria, IRISA - UMR 6074, F-35000 Rennes, France.

SeqBio 2018
November 20, 2018



Introduction Workflow Experiments Conclusion

1 Introduction

2 Workflow

3 Experiments

4 Conclusion

Morisse et al. LoRSCo 2/41



Introduction Workflow Experiments Conclusion

Introduction

Context
2010: Inception of third generation sequencing technologies

Two main technologies: Pacific Biosciences and Oxford Nanopore

Sequencing of much longer reads, tens of kbps on average, up to
882kb

Expected to solve various problem in the genome assembly field

Morisse et al. LoRSCo 3/41



Introduction Workflow Experiments Conclusion

Introduction

Context
Long reads (LR) are very noisy (10-30% error rate)

Display complex error profiles (errors are mostly indels)

Efficient error correction is mandatory

Two main approaches: hybrid correction and self-correction

Morisse et al. LoRSCo 4/41



Introduction Workflow Experiments Conclusion

Introduction

Hybrid correction

First efficient approach for LR error correction

Makes use of complementary short reads (SR) data

Different approaches: Alignment of SRs to the LRs, use of a De
Bruijn graph (DBG), ...

Particularly useful on old sequencing experiments (very high
error rates)

Morisse et al. LoRSCo 5/41



Introduction Workflow Experiments Conclusion

Introduction

Self-correction
Corrects the LRs solely based on the information they contain

Third generation sequencing technologies evolve fast

Error rates of the LRs now reach 10-12% on average

Error correction still needed

Self-correction is now a viable alternative

Morisse et al. LoRSCo 6/41



Introduction Workflow Experiments Conclusion

Introduction

Self-correction
State-of-the-art: Two main approaches

1 Compute overlaps between the LRs

2 Build a DBG from solid k -mers of the LRs (LoRMA
[Salmela et al., 2017])

Morisse et al. LoRSCo 7/41



Introduction Workflow Experiments Conclusion

Introduction

Self-correction
Overlapping can be performed via:

Mapping (Canu [Koren et al., 2017], MECAT [Xiao et al., 2017])

Alignment (PBDAGCon [Chin et al., 2013], daccord
[Tischler and Myers, 2017])

Two main approaches are then used

Morisse et al. LoRSCo 8/41



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. LoRSCo 9/41



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. LoRSCo 9/41



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. LoRSCo 9/41



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. LoRSCo 9/41



Introduction Workflow Experiments Conclusion

Introduction

Multiple alignment

Build a directed acyclic graph
(DAG) to represent the
alignments and compute
consensus

ACCAAGGT R1
ACAAGGGT R2

ACCAAGGT R1
ACCAA..T R3

A C

C

A

A

G G T

A G

De Bruijn graph

Divide the alignments into
small windows

Correct the windows
independently with DBGs

.GATCGGG..TAT.TGCCCGTGTTTATGCGTGTG R1
TGTTCAGGCAAATATG...GAAACAAGGCCTG.. R2

GAT..CGGGTATTGCCCGTGTTTATGCGTG..TG R1
TATTTCTG..AT.GCGC.TGACTTTTCTTGGCAG R3

Morisse et al. LoRSCo 9/41



Introduction Workflow Experiments Conclusion

Introduction

Contribution
We introduce LoRSCo, a new self-correction method combining
both previous strategies:

LRs are overlapped via a mapping strategy

Alignments are divided into windows

Windows consensus are computed using DAGs

Consensus is polished with the help of local DBGs

Compared to SOTA: better throughput, comparable quality

Morisse et al. LoRSCo 10/41



Introduction Workflow Experiments Conclusion

1 Introduction

2 Workflow

3 Experiments

4 Conclusion

Morisse et al. LoRSCo 11/41



Introduction Workflow Experiments Conclusion

Pre-treatment

Overlap the long reads

Via mapping, with Minimap2 [Li, 2018]

Morisse et al. LoRSCo 12/41



Introduction Workflow Experiments Conclusion

First step: Retrieve alignment pile

Select a long read to correct

A

Morisse et al. LoRSCo 13/41



Introduction Workflow Experiments Conclusion

First step: Retrieve alignment pile

Retrieve overlapping long reads

A

Morisse et al. LoRSCo 14/41



Introduction Workflow Experiments Conclusion

First step: Retrieve alignment pile

Get the alignment pile

A

R1 R2

R3 R4

R5 R6

Morisse et al. LoRSCo 15/41



Introduction Workflow Experiments Conclusion

First step: Retrieve alignment pile

Trim the alignment pile

A

R1 R2

R3 R4

R5 R6

Morisse et al. LoRSCo 16/41



Introduction Workflow Experiments Conclusion

First step: Retrieve alignment piles

Trim the alignment pile

A

R1 R2

R3 R4

R5 R6

Morisse et al. LoRSCo 17/41



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

Definition

A window w = (beg,end) is a ”factor” of an alignment pile

Example

A

R1 R2

R3 R4

R5 R6

beg end

Morisse et al. LoRSCo 18/41



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

Definition

A window w = (beg,end) is a ”factor” of an alignment pile

Example

A

R1 R2

R3 R4

R5 R6

beg end

Morisse et al. LoRSCo 18/41



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

For correction, we will only consider windows w = (beg,end) such as:

end−beg+1 = l

∀i,beg ≤ i ≤ end , i is covered by at least c reads

Example

On the previous example, with c = 4:

A

R1 R2

R3 R4

R5 R6

Morisse et al. LoRSCo 19/41



Introduction Workflow Experiments Conclusion

Second step: Divide piles into windows

For correction, we will only consider windows w = (beg,end) such as:

end−beg+1 = l

∀i,beg ≤ i ≤ end , i is covered by at least c reads

Example

On the previous example, with c = 4:

A

R1 R2

R3 R4

R5 R6

Morisse et al. LoRSCo 19/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Notations
We consider the subsequences of reads A,R1,R2, ... included in
the window

We call the subsequence of read A the template sequence

We call the subsequences of other reads si such as si ∈ Ri

Morisse et al. LoRSCo 20/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

1. Remove bad sequences

Start with a list containing the template

∀i if si shares n solid, collinear k -mers with the template, add si

to the list

Example (with solid = 2 and n = 2)
template

s1

s2

s3

list = {template,s3}

Morisse et al. LoRSCo 21/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

2. Compute consensus

Only consider the sequences of the list

Compute multiple sequence alignment (MSA) of these sequences

Compute consensus from the MSA (from the DAG)

⇒ POA [Lee et al., 2002]

Morisse et al. LoRSCo 22/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA (Partial Order Alignment)

Multiple sequence alignment strategy based on partial order
graphs

Two interests:

1 Computes actual multiple sequence alignment

2 Directly builds the DAG representing the multiple alignment

Morisse et al. LoRSCo 23/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA (Partial Order Alignment)

Multiple sequence alignment strategy based on partial order
graphs

Two interests:

1 Computes actual multiple sequence alignment

2 Directly builds the DAG representing the multiple alignment

Morisse et al. LoRSCo 23/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA (Partial Order Alignment)

Multiple sequence alignment strategy based on partial order
graphs

Two interests:

1 Computes actual multiple sequence alignment

2 Directly builds the DAG representing the multiple alignment

Morisse et al. LoRSCo 23/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

POA
Workflow:

Start with a graph only containing the first sequence

Insert new sequences with a generalization of the
Smith-Waterman algorithm

Example

Computing alignment of CGATTACG and CGCTTAT

C G A T T A C G

C T

Morisse et al. LoRSCo 24/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

In practice, we use windows of a few hundred bases

POA is time consuming

We developed a segmentation strategy

Compute MSA and consensus for smaller sequences⇒ faster

Morisse et al. LoRSCo 25/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the reads

Morisse et al. LoRSCo 26/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

1. Compute shared anchors between the reads

Morisse et al. LoRSCo 26/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

2. Search for the longest anchors chain such as ∀Ai Ai+1:

1 Ai is followed by Ai+1 in at least N reads

2 Ai+1 is never followed by Ai

Morisse et al. LoRSCo 27/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

cons.cons.cons.cons.cons.cons.

Morisse et al. LoRSCo 28/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

cons.cons.cons.cons.cons.cons.

Morisse et al. LoRSCo 28/41



Introduction Workflow Experiments Conclusion

Third step: Compute consensus of a window

Segmentation strategy

3. Compute MSA / consensus for sequences bordered by anchors

cons.cons.cons.cons.cons.cons.

Morisse et al. LoRSCo 28/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

Get the consensus result

Align the template to it (with dynamic programming)

Why not consider the whole consensus? It does not always
represent the template...

Example

template

consensus

corrected template

Morisse et al. LoRSCo 29/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

Get the consensus result

Align the template to it (with dynamic programming)

Why not consider the whole consensus? It does not always
represent the template...

Example

template

consensus

corrected template

Morisse et al. LoRSCo 29/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

Get the consensus result

Align the template to it (with dynamic programming)

Why not consider the whole consensus? It does not always
represent the template...

Example

template

consensus

corrected template

Morisse et al. LoRSCo 29/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

Get the consensus result

Align the template to it (with dynamic programming)

Why not consider the whole consensus? It does not always
represent the template...

Example

template

consensus

corrected template

Morisse et al. LoRSCo 29/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Retrieve the corrected template

Get the consensus result

Align the template to it (with dynamic programming)

Why not consider the whole consensus? It does not always
represent the template...

Example

template

consensus

corrected template

Morisse et al. LoRSCo 29/41



Introduction Workflow Experiments Conclusion

Fourth step: Anchor the consensus to the read

Align the corrected template to the read

Replace the aligned part of the template by its correction on the
read

Non-corrected bases in lowercase, corrected bases in uppercase
⇒ Polishing

Repeat with the other windows

Morisse et al. LoRSCo 30/41



Introduction Workflow Experiments Conclusion

Fifth step: Polish the correction

Approach

Find sketches of lowercase (uncorrected) bases

Rely on flanking k -mers to define a window

Build a DBG from the window’s sequences

Traverse the graph to find a path between the anchor k -mers

...GATCGGGTcatTGCCCGTGTTTATGCGTGTG...

Morisse et al. LoRSCo 31/41



Introduction Workflow Experiments Conclusion

Fifth step: Polish the correction

Approach

Find sketches of lowercase (uncorrected) bases

Rely on flanking k -mers to define a window

Build a DBG from the window’s sequences

Traverse the graph to find a path between the anchor k -mers

...GATCGGGTcatTGCCCGTGTTTATGCGTGTG...

Morisse et al. LoRSCo 31/41



Introduction Workflow Experiments Conclusion

1 Introduction

2 Workflow

3 Experiments

4 Conclusion

Morisse et al. LoRSCo 32/41



Introduction Workflow Experiments Conclusion

Experiments

Datasets
E. coli, 50x PacBio simulated LRs, 12% error rate

S. cerevisiae, 50x PacBio simulated LRs, 12% error rate

Compared tools

Canu

Daccord

LoRMA

MECAT

Morisse et al. LoRSCo 33/41



Introduction Workflow Experiments Conclusion

Experiments

Datasets
E. coli, 50x PacBio simulated LRs, 12% error rate

S. cerevisiae, 50x PacBio simulated LRs, 12% error rate

Compared tools

Canu

Daccord

LoRMA

MECAT

Morisse et al. LoRSCo 33/41



Introduction Workflow Experiments Conclusion

Experiments

Results (E. coli)

Corrector Throughput (Mbp) Error rate (%) Runtime Memory peak (MB)
Original 232 12.2674 N/A N/A
Canu 173 0.5841 19 min 20 3,623

daccord 218 0.0166 38 min 13,559
LoRMA 126 9.4315 37 min 31,902
MECAT 193 0.1118 4 min 2,130
LRSC 211 0.1784 1 h 3,927

Morisse et al. LoRSCo 34/41



Introduction Workflow Experiments Conclusion

Experiments

Results (S. cerevisiae)

Corrector Throughput (Mbp) Error rate (%) Runtime Memory peak (MB)
Original 618 12.2835 N/A N/A
Canu 477 0.6294 55 min 3,702

daccord 579 0.0451 1 h 51 min 31,774
LoRMA 339 9.6010 2 h 41 min 31,480
MECAT 510 0.1493 11 min 4,275
LRSC 561 0.3412 3 h 56 min 8,487

Morisse et al. LoRSCo 35/41



Introduction Workflow Experiments Conclusion

1 Introduction

2 Workflow

3 Experiments

4 Conclusion

Morisse et al. LoRSCo 36/41



Introduction Workflow Experiments Conclusion

Conclusion

Combines different strategies from the SOTA

Computes actual MSA

Introduces a segmentation strategy allowing fast computation of
MSA

Compares well to the SOTA

Runtime remains an issue

Available at: https://github.com/morispi/LoRSCo

Morisse et al. LoRSCo 37/41



Introduction Workflow Experiments Conclusion

Future works

Focus on the runtime:

Adapt the parameters

Optimize the polishing step

Adapt windows length and coverage threshold in real time

Validate the method on real data

Morisse et al. LoRSCo 38/41



Introduction Workflow Experiments Conclusion

Thanks for your attention

Morisse et al. LoRSCo 39/41



Introduction Workflow Experiments Conclusion

References I

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J.,
Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E.,
Turner, S. W., and Korlach, J. (2013).
Nonhybrid, finished microbial genome assemblies from long-read
SMRT sequencing data.
Nature Methods, 10:563–569.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H.,
and Phillippy, A. M. (2017).
Canu: scalable and accurate long-read assembly via adaptive k
-mer weighting and repeat separation.
Genome Research, 27:722–736.

Morisse et al. LoRSCo 39/41



Introduction Workflow Experiments Conclusion

References II

Lee, C., Grasso, C., and Sharlow, M. F. (2002).
Multiple sequence alignment using partial order graphs.
Bioinformatics, 18(3):452–464.

Li, H. (2018).
Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094–3100.

Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2017).
Accurate selfcorrection of errors in long reads using de Bruijn
graphs.
Bioinformatics, 33:799–806.

Morisse et al. LoRSCo 40/41



Introduction Workflow Experiments Conclusion

References III

Tischler, G. and Myers, E. W. (2017).
Non Hybrid Long Read Consensus Using Local De Bruijn Graph
Assembly.
bioRxiv.

Xiao, C. L., Chen, Y., Xie, S. Q., Chen, K. N., Wang, Y., Han, Y.,
Luo, F., and Xie, Z. (2017).
MECAT: Fast mapping, error correction, and de novo assembly for
single-molecule sequencing reads.
Nature Methods, 14(11):1072–1074.

Morisse et al. LoRSCo 41/41


	Introduction
	Workflow
	Experiments
	Conclusion

